Difference between revisions of "2015 AIME I Problems/Problem 7"
Line 75: | Line 75: | ||
draw(K--N--M--L); | draw(K--N--M--L); | ||
P=foot(E,M,L); | P=foot(E,M,L); | ||
+ | draw(P--E); | ||
label("$P$",P,E); | label("$P$",P,E); | ||
label("$A$",A,NW); | label("$A$",A,NW); |
Revision as of 19:04, 21 March 2015
Problem
7. In the diagram below, is a square. Point is the midpoint of . Points and lie on , and and lie on and , respectively, so that is a square. Points and lie on , and and lie on and , respectively, so that is a square. The area of is 99. Find the area of .
Solution
We begin by denoting the length , giving us and . Since angles and are complimentary, we have that $\triangle CDE \~ \triangle JFC$ (Error compiling LaTeX. ! Missing $ inserted.) (and similarly the rest of the triangles are triangles). We let the sidelength of be , giving us:
and .
Since ,
,
Solving for in terms of yields .
We now use the given that , implying that . We also draw the perpendicular from E to ML and label the point of intersection P:
pair A,B,C,D,E,F,G,H,J,K,L,M,N; B=(0,0); real m=7*sqrt(55)/5; J=(m,0); C=(7*m/2,0); A=(0,7*m/2); D=(7*m/2,7*m/2); E=(A+D)/2; H=(0,2m); N=(0,2m+3*sqrt(55)/2); G=foot(H,E,C); F=foot(J,E,C); draw(A--B--C--D--cycle); draw(C--E); draw(G--H--J--F); pair X=foot(N,E,C); M=extension(N,X,A,D); K=foot(N,H,G); L=foot(M,H,G); draw(K--N--M--L); P=foot(E,M,L); draw(P--E); label("$P$",P,E); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,NE); label("$E$",E,dir(90)); label("$F$",F,NE); label("$G$",G,NE); label("$H$",H,W); label("$J$",J,S); label("$K$",K,SE); label("$L$",L,SE); label("$M$",M,dir(90)); label("$N$",N,dir(180)); (Error compiling LaTeX. P=foot(E,M,L); ^ 09a8307e14cbfd1b6c64fdd136903dbeaae22067.asy: 25.1: no matching variable 'P')
This gives that and
Since = , we get
So our final answer is
See also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.